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Abstract— The quantized neural network (QNN) is an efficient
approach for network compression and can be widely used in
the implementation of field-programmable gate arrays (FPGAs).
This article proposes a novel learning framework for n-bit QNNs,
whose weights are constrained to the power of two. To solve the
gradient vanishing problem, we propose a reconstructed gradient
function for QNNs in the back-propagation algorithm that can
directly get the real gradient rather than estimating an approxi-
mate gradient of the expected loss. We also propose a novel QNN
structure named n-BQ-NN, which uses shift operation to replace
the multiply operation and is more suitable for the inference on
FPGAs. Furthermore, we also design a shift vector processing
element (SVPE) array to replace all 16-bit multiplications with
SHIFT operations in convolution operation on FPGAs. We also
carry out comparable experiments to evaluate our framework.
The experimental results show that the quantized models of
ResNet, DenseNet, and AlexNet through our learning framework
can achieve almost the same accuracies with the original full-
precision models. Moreover, when using our learning framework
to train our n-BQ-NN from scratch, it can achieve state-of-the-art
results compared with typical low-precision QNNs. Experiments
on Xilinx ZCU102 platform show that our n-BQ-NN with our
SVPE can execute 2.9 times faster than that with the vector
processing element (VPE) in inference. As the SHIFT operation in
our SVPE array will not consume digital signal processing (DSP)
resources on FPGAs, the experiments have shown that the use of
SVPE array also reduces average energy consumption to 68.7 %
of the VPE array with 16 bit.

Index Terms— Deep compression,
field-programmable gate array (FPGA),
network (QNN).

deep learning,
quantized neural

I. INTRODUCTION

EEP convolutional neural networks (CNNs) have sub-

stantially become the dominant artificial intelligence (Al)
approach for a variety of computer vision tasks such as
image classification [1]—[3], face recognition [4], [5], semantic
segmentation [6], [7], and object detection [8], [9]. The
significant accuracy improvement of CNNs brings with the
cost of huge computational complexity, resource, and power
consumption as it requires a comprehensive estimation of all
the scopes within the feature maps [10], [11]. For example,
the AlexNet model is over 200 MB, and the VGG-16 model is
over 500 MB [10]. Toward such overwhelming resources and
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computation pressure, hardware accelerators such as GPUs,
field-programmable gate arrays (FPGAs), and ASICs have
been applied to accelerate CNNs. Among these accelerators,
FPGAs have emerged as one of the popular solutions when
considering both the reprogramability and energy efficiency.

Implementing CNN on FPGAs is not an efficient practice
due to limited resources and bandwidth. Thus, quan-
tized neural network (QNN) is a good choice for FPGA
implementation, which simultaneously gives consideration to
computational efficiency, resources, and classification accuracy
in inference. In general, QNNs can be achieved in two ways:
1) an estimator is used to estimate the gradient of the expected
loss to solve the problem of gradient vanishing so that QNNs
can be trained from scratch with the help of this estima-
tor and 2) fine-tuning on a pretrained full-precision model
obtains QNN that bypasses the problem of gradient vanishing.
Although the first method estimates a gradient, which makes it
possible to train QNN from scratch, the gradient of expected
loss obtained by estimators has a noise source compared to
the real gradient that causes a gap in classification accuracy
between the QNNs and full-precision CNNs. The second
method fine-tunes QNNs on a pretrained full-precision model
that solves the problem of classification accuracy better, but
a challenging factor is that the structure of QNNs is limited
by the original structure of the pretrained CNNs model, and
the structure of QNNs cannot be flexibly adjusted. Due to
the constraints of computational resources and computational
efficiency on FPGAs, it is inevitable to adjust the network
structure for the hardware environment. In order to transform
different CNNs into QNNs that can run efficiently on FPGAs,
it is essential for a general learning framework to solve the
above two challenges [12]-[15].

In this article, we propose a novel learning framework for
n-bit QNNs, whose weights are constrained to the power
of two (£27°, 427" ..., 0). We introduce a reconstructed
gradient function in the back-propagation algorithm that can
directly get the real gradient, rather than the estimated gradient
given by estimators. Thus, the QNN trained by our framework
will be more accurate. At the same time, QNN after adjusting
the structure can continue to fine-tune with our framework.
The learning framework is applied to train our proposed
n-BQ-NN, which is suitable for efficient implementation on
FPGAs. We also evaluate the effectiveness of our approach on
state-of-the-art networks such as ResNet [16], DenseNet [17],
and AlexNet [1]. The main contributions of this article are
summarized as follows.

1) We propose a novel learning framework for n-bit QNNss.

In this framework, we propose a reconstructed gradient
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function in the back-propagation algorithm, which can
overcome the gradient vanishing problem during training
the QNNs and can calculate the accurate gradient com-
pared with the estimators-based approaches. We achieve
state-of-the-art results compared with typically low-
precision QNNss.

2) We propose a highly efficient QNN structure called
n-BQ-NN for FPGAs. Our proposed architecture, which
consists entirely of convolutional layers and implements
a uniform convolution kernel, can maximize the resource
utilization and improve the parallel computational effi-
ciency on FPGAs while preserving the accuracy of
QNNgs.

3) We propose a novel shift-vector processing ele-
ment (SVPE) array for FPGAs, which replaces the mul-
tiplication with the SHIFT operation when calculating
convolution operation on FPGAs. The computational
efficiency of our SVPE array can achieve a performance
of 2.9 times higher than that of the vector processing
element (VPE) array in the case of the same network
structure on FPGAs.

The rest of this article is organized as follows. Section II
summarizes related prior works on QNNs and FPGAs. Our
learning framework is presented in Section III. In Section 1V,
we demonstrate the effectiveness of our learning framework
via comparable experiments. We theoretically analyze and
practically test the computational efficiency of our n-BQ-NN
using our quantization method in Section V. The conclusion
is given in Section VI.

II. RELATED WORK
A. Learning for QNNs

Since the amount of the model capacity is too large, it is
necessary to cut down it to perform CNNs on FPGAs, which
is consistent with the purpose of deep compression. In gen-
eral, deep compression can be divided into three categories,
i.e., pruning, Huffman coding, and quantization. The pruning
method will simplify the deep neural network by cutting off
the network connections with small weights on the normal
trained network [18]-[20]. The Huffman coding method is
an optimal code used for lossless data compression [21],
which uses entropy to encode source symbols by variable-
length codewords. Han et al. [20] show that 20%—-30% of
the network storage will be saved after Huffman coding the
nonuniformly distributed values. When considering perform
compressed networks on FPGAs, the network after pruning
is an asymmetric structure, which is unsuitable for hard-
ware implementation, and the Huffman coding may only be
regarded as a postcompression combined with the other two
compression methods, so most of the hardware accelerators
will focus on the quantization method.

The quantization-based method normally employ the low-
precision weights, varied from 1 to 5 bits, to represent
the CNNs [15], [22]-[28]. Some studies train QNNs from
scratch by estimating the gradient of expected loss based on
straight-through estimator [15], [22], [23], [27]. For example,
Courbariaux et al. [15] train a classification neural network
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from scratch with 1-bit weight and activation, which can run
seven times faster than the CNNs. Choi et al. [23] propose a
neural quantization scheme called parameter clipping activa-
tion, which uses a parameter to find the optimal quantization
scale for arbitrary bit-width activations. Choi et al. [22]
introduce a novel technique called statistics-aware weight
binning, which finds the optimal scaling factor based on
statistical characteristics of the distribution of the weights
to minimize the quantization error. The QNNSs trained by
the above quantization methods only accelerate the inference;
Zhou et al. [27] propose a DoReFa-Net that can accelerate both
training and inference by low bit-width weights, activations,
and gradients, respectively. However, these estimator-based
methods have a noise compared to the real gradient. Thus,
these QNNs cannot achieve an ideal classification accuracy,
especially on multiclassification data sets such as CIFAR-100.

Some other quantization methods are dedicated to design
special strategies to fine-tune QNNs, which will not rely on
the backpropagation algorithm and can bypass the problem of
gradient vanishing [26], [28], [29]. They can achieve much
better accuracy as they are independent of estimators. For
example, Park et al. [29] propose precision highway that has
an end-to-end high-precision information flow for ultralow-
precision computation. This linear weight quantization method
is based on the assumption that the weight distribution is
the Laplace distribution. Recently, Zhou et al. [26] propose
an incremental network quantization method, which converts
pretrained full-precision CNNs model into a low-precision
model, where the weights are constrained to the power of two
or zero. It has been studied that there will be little loss on
the classification accuracies when using 2-5-bit low-precision
weight [26], [27]. However, these quantization methods will
depend on the pretrained network structure rather than the
backpropagation algorithm, which will be difficult to satisfy
the network-structure-optimization requirements due to the
hardware limitation.

B. CNNs Implemented by FPGAs

Considering the inference, the CNNs have a highly hier-
archical structure of multiple feature maps, whose structure
exposes a large amount of parallelism that makes CNNs
very suitable for FPGA implementation. This structure builds
on the accumulation of a huge number of convolutions that
will consume a huge number of floating-point resources on
FPGAs. In addition, the structure of CNNs often contains
many convolutional layers. Thus, the convolution module with
different parameters needs to be executed iteratively during the
inference. Frequent execution of data caching and parameter
loading will be limited by the bandwidth. Therefore, in many
studies, their hardware structures of CNNs are designed mainly
for the two bottlenecks of floating-point resources and band-
width [12], [13], [16], [17].

In terms of optimizing for floating-point resources,
Lu et al. [30] design a fast Winograd algorithm, which can
decrease the use of floating-point resources on FPGAs and
reduce the complexity of convolution dramatically. Simulta-
neously, they also give the formula for estimating the compu-
tational efficiency, which demonstrates that the fast Winograd
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Fig. 1. For any full-precision weight distribution (indicated by the blue curve
in the figure) trained by CNN model, nonuniform sampling can be used to
approximate the full-precision distribution, which represented by the red curve
in the figure.

algorithm is more efficient than the conventional convolutional
algorithm due to the use of fewer floating-point resources
on FPGAs. Meloni et al. [13] present an accelerator config-
uration for CNNs that reach more than 97% digital signal
processing (DSP) resource utilization at a 150-MHz operating
frequency with 16-bit precision. They show that the floating-
point resource utilization is the highest when executing
3 x 3 filters on FPGAs.

Other studies have focused on optimizing the data schedul-
ing structure to reduce the impact of the bandwidth. For
example, Sankaradas er al. [14] implement a VPE array
coprocessor, which can accelerate the CNNs by optimizing the
cache between distributed off-chip memory banks and on-chip
computing elements on FPGAs. Peemen et al. [12] show that
their scheduler prefers to use only convolutional layers without
fully connected layers on FPGAs, which can maximize the
efficiency of on-chip memories by reducing the impact of the
bandwidth bottleneck.

The crucial issue with the above methods is that they
usually only consider the bottleneck at a single level and
fail to coordinate these two constraints to improve the com-
putational efficiency of the hardware accelerators. In this
article, we reduce the impact of the above two constraints
by introducing the QNNs into FPGAs, which provides a new
idea to deal with the above two bottlenecks. Since the weights
in our QNNs are quantized to the power of two, the quan-
tized weights directly reduce the bandwidth required to load
the weights. In addition, the use of the quantized weights
can translate the multiplication into shifting in the convolu-
tion module, which greatly reduces the use of floating-point
resources.

IT1. n-BQ-NN
A. Fundamental Idea of Our n-BQ-NN

The main idea of our n-BQ-NN is based on Fig. 1, which
shows that the information loss led by the quantization method

with the power of 2 can be interpreted as the sampling loss
caused by nonuniform sampling. In fact, the weights of CNNs
with large absolute values will be dominant to the overall
classification accuracy of the networks although these weights
with large values only account for a small ratio among all
the weights [11], [31]. For an arbitrary probability density
function of the weights in a neural network, denoted by ¢ (x),
we can use the blue curve in Fig. 1 to represent ¢(x) that
meets fllgzﬁ(x)dx = 1. In this way, we can calculate the
sampling loss ®(x), which can be represented as the area
between two distributions (red and blue curves) in Fig. 1.
By calculating, the sampling loss ®(x) is represented as the
following recursive formula, where n is the quantized bit width
of the weights:

(1) =1-4(27"), n=1
O(n) = B(n — 1) + 2! p (21" (1)
—21p2M), n > .

It can be seen from the above formula that the sampling loss
always decreases as the increasing of quantized bit width of the
weights, which indicates that the sampling loss is negatively
related to the quantized bit width of weights. However, the bit
width is limited and needs to reduce as much as possible
in QNNs. Thus, finding the best balance between quantized
bit width and the sampling loss is the key to balancing the
performance, speed, and resources of QNNs. We define the
L(n) =2"""[¢(2'") — $(27")] as the variation between two
sampling losses, ®(n) and ®(n — 1), from (1). Then, we can
prove that £(4) will approach to zero in our quantization
method with the power of 2, which can be ensured by the
Theorem 1. Therefore, continuing to increase the quantized
bit width of n after 3 is not helpful to decrease the sampling
loss.

Theorem 1: 0 < |L(4)] < 7.8 x 1073,
Proof: We use the Taylor expansion with Peano residuals

to represent the probability density function ¢ (x)

H@27") = ¢(0) — In2¢' (027" + 0(n27™")
SR = ¢(0) — [n2¢' (2! ™" + 0(m2'™). ()

Substituting (2) into L£(n), we get

L) =2""[gQ2"™) —p27)]
= 217"[In2¢' (0)n2™" — om2™") — In2¢' (O)n2'™"
+ o2

~ —In2¢' (0)n2' =", 3)

Since 0 < ®(n) < 1, we deduce that 0 < [£(2)] < 1
and 0 < In2¢'(0) < (1/4). In final, we get 0 < |L(4)| <
(1/128) by substituting the range of [n2¢’'(0) into L(4)
due to (3). ]

From the hardware perspective, the resource consump-
tion of SHIFT operation is much less than multiplication,
so our intention is to use the SHIFT operation instead of
multiplication. Consider that the shift right operation will
make the weights exceed the constraint range of (—1,1);
thus, all SHIFT operations are shift left and every quantized
weight is chosen from the entries (F270, 271, .., £270,0),
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where £277 indicates that its multiplication can be calculated
by « i and O indicates that no operations are required.
Our n-BQ-NN quantizes the weights to the entries, which
are encoded to n-bit and suitable for hardware computation.
Under such circumstance, the staircase function staircase(W)
can be used to describe our n-bit quantized weights as (4)
(typically, n is greater than 1, and staircase(W) is degraded
to sign(W) if n is equal to 1), where W are full-precision
weights

27 sign(W), Ay < [W| < A;

4
0, W] < A,. @

staircase(W) = [

Here, i is taken from r — 1 to O in turn, where » = 2"~ — |
and sign(W) is the sign function

. +1, W =0
sign(W) = {_1 W0 6

B. Gradients Computation in n-BQ-NN

In order to facilitate the discussion as follows, we need to
define some variables first, where le-k represents the weight
that connects the kth neuron of the (I — 1)th layer to the jth
neuron of the /th layer, b§- represents the bias of the jth neuron
of the /th layer, zé- represents the input of the jth neuron of
the Ith layer (2, = >, Wi a,”" +b'), a!; represents the output
of the jth neuron of the /th layer (a} = 6(z)), and 6 is the
activation function.

We have also to add an extra quantized weight so that we
can train our n-BQ-NN, where the quantized weight is shown
as follows:

le-k = staircase(Wj{k). (6)

The cost function of mini-batch of m samples in our
n-BQ-NN is

C = ﬁzx)ny(x)—a%x)nz (7)

where x is the input sample, y is the actual classification, at

is the prediction output, and L is the maximum number of
layers in the network.

By defining ’Tj’ = (oC /azé-) as the error produced by the
Jjth neuron of the /th layer, we can use the back-propagation
algorithm to calculate the gradient and update the parameters
according to the following three steps.'

1) Calculating the error of the last layer of the network

oC _ oC Oaj

T.L = — = — _J
j L L L
6zj 6aj 6zj
oC _ oal ,
TLZEOG?:VaCQQ(ZL). (8)

'® represents the Hadamard product that is used for point-to-point product
between matrices or vectors.
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2) Calculating the error of each layer of the network from
the back to the front

e oC ozt odl
i = g = Z W ’ W ’ 6_1
j 9% i 9%
o(Wi'al + o)
= Z'];l+1 . / Jl . 9/(ZIJ)
0 oa;
= S0 )
k
N T
TI — ((WlJrl) TH—]) QHI(ZI). (9)

3) Calculating the gradient of weight and bias, respectively

1
, oC _aC oz

= oL T A
ob, oz, ab!
l a(W;ka,i‘1+b§) l
=T} ——— =T, (10)
J
7l -1 !
W _ ac _g azé _ , G(ijak +b])
T owl T o awl T oW,
by -1 A
— 7! 8<W;kak +b5) aVVJI'k
! Wi, oW!,
ow!
=Tl (11)
/ oWl

In the above process of deriving the entire back-propagation,
except for the gradient of weight of the last step, the other steps
are well-defined. Based on (11), the gradient of weight can be
calculated as follows:

17l
ow!,

[
ow!,

gW = TI .a]](71 .

j =0

(12)
where (W', /oW!) is exactly the staircase’ (W), which is
the derivative of staircase(WJ’-k). This derivative satisfies the
conditions of the Dirac delta function d(x). According to the
properties of d(x), (0 le.k /0 le.k) can be calculated as follows:

GIAN
oW,

=d(W) =0. (13)

Substituting (6W/,/6W},) = 0 into (12), we discover that
model cannot be trained by the back-propagation algorithm
due to gradient vanishing.

To resolve the above problem, we reconstruct the quantized
weight function as (14) to ensure that the weights can be
updated by using the back-propagation algorithm as shown in
Fig. 2, the blue full line, where o is an adjustable parameter
in the range of (0, 1)

Wi = — )W +aWl. (14)

By substituting (14) into (11), we can recalculate the
gradient of weight as follows again with (6W§k/8WJlk) =
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Fig. 2. Red dotted line represents the staircase function, and the blue full
line represents our reconstructed function.

o+ (1— a)&(ij) =a:
77l

ow:
gW _ sz .all:l . Jk

=aT!. a,lfl.

= (15)
oWy /

At this point, we have reconstructed the quantized
weight function as (14) to solve the gradient vanish-
ing, but the weights cannot be quantized to the entries
(£270, £271, ..., 0) directly as (6). However, we can prove
that the reconstructed quantized weight function will approx-
imate to the entries after several iterations, which can be
ensured by the Theorem 2.

Assumption 1: Since the algorithm needs to be iterated,
our problem needs to be discussed within the framework
of the series. We define W;k as an iteration of x,, W;
is equivalent to x,4;, and the value of a; is chosen from
le-k = staircase(Wj{k) = (£279, 271, ..., 27, 0).~

Theorem 2: In the framework of the series, W;k will
approach to le-k when the number of iterations is sufficient,
where n is the number of iterations.

Proof: The general terms of series x from 1 to n are
written as follows based on (14):

xo—ax; =1 —a)a; (1

' (16)
Xp—0xy—1 =1 —a)a; (n—1)

Xpp1 —ox, = (1 —a)a; (n).

We let oD x (1) 4---+a x (n — 1) + (n), then, we get the
equation as follows:

Xpp1 — 0" Dy = 1 —a)a;(14+a+---+a"D)

=a;(1 —a"™M). (17)

As the number of iterations increases, x,41 will approach a;.
With the guarantee of Theorem 2, the above equation can be
rewritten as W', = staircase(W!,) (namely, x,11 = a;) when
the number of iterations is enough (n — o0) and a is in the
range of (0, 1). In the actual algorithm implementation, it is
only necessary to iterate through several steps following the

training process, and the networks can be quantized completely
as (6). ]

The design of a in our reconstructed quantized weight func-
tion takes three aspects into consideration. First, the designed
function must satisfy the Theorem 2. Second, our recon-
structed function indicates that the ratio of 1 — a : a between
quantized weights and full-precision weights can be used to
adjust the information ratio of quantized weights and full-
precision weights in the training process. Third, on the other
hand, o is the slope of our reconstructed function shown as
the blue full line in Fig. 2, which can be used to change the
gradient descent rate of back-propagation based on (15) during
the training.

C. Posterior-Distribution Adjustment

In the initialization of the networks, the initialization modes
MSRA and Xavier [32] that will adjust variance based on the
number of inputs are prone to converge than the traditional
Gaussian distribution initialization mode with fixed variance
in DNNs. Inspiring by this fact, we suspect that adjusting
the distribution of quantized weights may make it easier
for us to train our n-BQ-NN. Here, we consider that full-
precision networks are prone to converge than quantized
networks; thus, we prefer to keep the distribution of quantized
weights consistent with that of full-precision weights. Com-
paring the probability density function before quantization
¢ (x) (its corresponding expectation and variance are E (x) and
Var(x), respectively) and the probability density function after
quantization staircase(x) [as (4)], we make their expectation
and variance equal, respectively, so that their distribution is
consistent as follows:

1
E(x) :/ x staircase (x)dx
i (18)
Var(x) = / (x — E(x))? staircase(x)dx.
-1

The original full-precision probability density function ¢ (x)
and the value of quantized weight function staircase(x) are
fixed, so we can only adjust the value range of staircase(x) to
meet (18).

D. Training Algorithm for n-BQ-NN

In the actual training algorithm for n-BQ-NN, the batch
normalization (BN [31]) is added in our n-BQ-NN because it
is conducive to reduce the overall impact of the weight scale
and accelerate the training. Thus, we will derive the back-
propagation algorithm for n-BQ-NN with BN and give the
training algorithm in this section.

First, we define four variables of BN, where o represents
the variance of all samples of a batch, u represents the sample
mean, and y, S are the scale variation coefficients. Due to
the existence of BN, the bias term can be ignored, so the
input of the neuron is re-expressed as le = > ija,i_l,
the normalized input of the neuronis 2; = y ((z; —u)/o)+ B,
and the output of the neuron is a; = 6(Z;). Then, we can
calculate the error and the gradient, based on the discussion
of Section III-B, according to the following three steps.
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Fig. 3. Overview of our trained quantization procedure.

1) Counting the mean and variance of the sample, and
calculating the gradient of them

1 m
13
m <3

u

l m
2
== - 19
ot = — ;(z, (19)
0C  ~o 0C day 0%
oc? day, 0%y 02
= ——y —*Z 9 (@) (2 — 1) (20)
0C ¢ oC 6ak 0% | oC do?
ou - day 03 ou = 002 G,u
N 9C
=2 0w - — = 21
o 2 a (2 Z(Zk n). (21)

2) Calculating the error of the network

r_ € _0Caaay  aC a0t aCop
! 9z;  0Oaj oz azj do? azj op 0z
_ Y 6C 1ac
0 6 Z(Zk ”)aaz mou
(22)
3) Calculating the gradient of weight, y, and £, respec-
tively
oW i
=7;-a — 2 —aT-a 23
k- aWJIk - ak (23)
0C day 0%
7= — = = 24
§ day 0Zy Oy Z (24
oC 8ak afk
P = — = —<9 25
g 50, 92, 38 =2 0G0, (25)

With the foundation of the above formulas, we can propose
our training algorithm for n-BQ-NN, as indicated in Algo-
rithm 1. This algorithm covers two learning modes: training
from scratch and fine-tuning on the pretrained model, where
the first mode means that the weights are randomly initialized
and the second mode means that the weights are initialized
by the pretrained full-precision network model. The overall
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Intermediate Weight Trained Quantization

quantization process is illustrated as Fig. 3. The code for
training algorithm is available.?

E. Activation Quantization in n-BQ-NN

The above discussion is all about the quantization of
weights. To take the integrity of our n-BQ-NN and the neces-
sity of subsequent ablation experiments into consideration,
we need to discuss the quantization of activations in this
section. Now, let us put our eyes back on Section III-B. In the
case of the quantized activations, the output of the jth neuron
of the /th layer can be rewritten as follows:

&; = staircase (zlj) (26)

where staircase() is the activation function.

At this point, we have encountered the same problem; the
error of network Tj’ becomes zero due to the existence of
(6€1§/6z§-), when (26) is substituted into (8) and (9).

Considering the expectation of (6C/ 8Z5»‘), the error of
network has reappeared, which is guaranteed by Theorem 3.

Theorem 3: Let us define C = C(aj, €;), where a; fol-

lows (26) that is chosen from (£27° £27! ..., 0), then,
we get a new expression as follows:
oC oC
Eo | —|=4A—, if |zj] <1 27
‘J[azj} sa, T ll= 7)

where ¢; is the noise source that influences z;,

the expectation over z;, and A is a constant.
Proof:

0
E,, [a—c}
Zj

E,[-] means

[Z Ca; = +2)P(z; > €jlz))
+ > C@a;=-2)1-P(z; > Ej|Zj))j|

0P(z; > €;lz)) N i A i
= #[ZC(@ =+2)—ZC(a,~ =2 )}.
(28)

Zhttps://github.com/papcjy/n-BQ-NN
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Algorithm 1: Training algorithm for n-BQ-NN with
BN. C is the cost function for mini-batch, 6 is the
activation function, and L is the number of layers.
The function staircase(-) specifies how to quantize the
weights. BatchNorm() specifies how to batch-normalize
the inputs. BackBatchNorm() specifies how to back-
propagate through the BN. Update() specifies how to
update the parameters when their gradients are known,
using either SGD or ADAM

Require: a minibatch of outputs and targets (a”, y),
learning rate 7, previous weights W*, previous
BN parameters (y*,5%), and a constant a.

: the updated weights (W*)* and updated BN
parameters ((7%)", (84)")

{1. Computing the parameter gradients:}

{1.1 Forward propagation: }

for k =11t L do

WK « (1 — a) staircase(WX) + a W*
o < a1k

2k« BatchNorm(z*, y ¥, )

ak < 02"

end

{1.2 Backward propagation }

Computing g“L =

for k =L to 1 do

(g7", g") < BackBatchNorm(g®', z*, y ¥, g*)
Tk ga"e/(zk)

Ensure

oa’-

gak" <« TkWwk
ng <« oc(T")Ta"_l
end

{2. Updating the parameter gradients:}
for k =11t L do

(5" B < Update(y*, g, 7, g7 e
(Wk)* « Update(W*, g"*, i)

end
For C(a; = +2'), we can approximate it using the Taylor
expansion
. oC .
Cla;: = +2' =C(a;: = i
@ =+20) = C@ =0+ 7|
o2 o’C <
— 221 19} — 231
0} la;=o 0] la;=o
oC ;
C(a,——Z))—C(aJ—O) 2!
aaj a;=0
o*C . o’C :
+—| 2%+0l—| 27) @9
045 la;=o0 0a; la;=o

For (0P (z; > €jlz;)/0z;), we split it into two parts
aP(Zj>6j|Zj)_aP(Zj>6j|Zj) 5P(Zj>€j|Zj)

0z 0z 0z
‘Zj|>1 |Z‘,“Sl
1 i1
o[, 3 de; " afszf 29¢)
o 0z 0z lesl =t
(30)

Combining (29) and (30), (28) can be derived as follows:

oC oC
Eo | —|=1.<f2) 22— . 31
Ej|:a i| I~‘]_1( le oa; @f=) ey
Let 23°,2% = 4, then

oC oC
E, |:—i| = A1 =1 (32)

aZj 6aj
O

Under the Theorem 3, we can re-express the error of
network and quantize the activations in our n-BQ-NN by
rewriting (8) and (9) as follows:

oC oC
L
,Tj = g = aalej‘g] (33)
J J
aC oC ozt
1 _ _
,Tj _glj_ia’\ll‘“l‘<l /12614—1 ’ a j
(W’H ’+b’“)
= Tl+1
Z k aa§
= ’IZTHI Wi Lz <1 G4

IV. EXPERIMENT

In our experiments, we use three network structures, such
as ResNet, DenseNet, and AlexNet. The network structure of
our n-BQ-NN (n can take 1-5) is similar to the architecture
of AII-CNN [33] that consists solely of convolution layers
and Network in Network block [34]. Table I details the para-
meter settings and our network architecture. In the following
experiments, our training algorithm is used to train the model
from scratch or fine-tune on the full-precision model in five
benchmark data sets, such as MNIST, SVHN, CIFAR-10,
CIFAR-100, and ImageNet. We unfold our experiments from
four dimensions, respectively, such as classification accuracy
compared with low-precision QNNs, quantization errors by
our training method, compression ratio in different data sets,
and convergence speed compared with BNN.

A. MNIST

The MNIST data set [35] consists of handwritten digit
images with 32 x 32 pixels, organized into ten classes (0-9).
The training and test sets contain 60000 and 10000 images,
respectively. We perform this data set without data
augmentation [36].

B. CIFAR

The two CIFAR data sets [37] consist of natural color
images with 32 x 32 pixels, respectively, 50000 training and
10000 test images, and we hold out 5000 training images as a
validation set from the training set. CIFAR-10 (C10) consists
of images organized into ten classes and CIFAR-100 (C100)
into 100 classes. We adopt a standard data augmentation
scheme (random corner cropping and random flipping) that is
widely used for these two data sets [33], [34], [36], [38]-[41].
We normalize the images using the channel means and stan-
dard deviations in preprocessing.
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TABLE I

OUTLINE OF THE PROPOSED n-BQ-NN NETWORK ARCHITECTURE.
HERE, TAKING THE CIFAR DATA SETS AS AN EXAMPLE, THE INI-
TIAL INPUT SIZE OF THE NETWORK IS 32 x 32 x 3. THE
CONV QUANTIZED CONTAINS THREE CALCULATION STEPS,
RESPECTIVELY, W = staircase(W), net = conv2d(W, x),
AND net = BatchNorm(net), WHERE THE WEIGHTS
INVOLVED IN CONVOLUTION CALCULATION ARE
QUANTIZED WEIGHTS THAT ARE CHOSEN FROM
THE ENTRIES (£279, £271, ..., 0). IN CON-

VOLUTION CALCULATION, THE MULTIPLI-

CATIONS ARE REPLACED BY SHIFT
OPERATIONS DURING THE INFER-

ENCE, BECAUSE THE WEIGHTS
ARE POWER OF 2

type patch size/stride output size
conv quantized 3x3/1 32x32x128
conv quantized 3x3/1 32x32x128
conv quantized 3x3/1 32x32x128
pool 2x2/2 16x16x128
conv quantized 3x3/1 16x16x256
conv quantized 3x3/1 16X 16x256
conv quantized 3x3/1 16X 16x256
pool 2x2/2 8x8x256
conv quantized 3x3/1 8x8x512
conv quantized 1x1/1 8x8x 1024
conv quantized 1x1/1 8x8x10 (100)
pool 8x8 1x1x10 (100)
softmax classifier 1x1x10 (100)
C. SVHN

The SVHN data set [42] consists of color images of house
numbers collected by Google Street View with 32 x 32 pixels,
organized into ten classes (0-9). There are 73257 images
in the training set, 531131 images for additional training,
and 26032 images in the test set, respectively. We divide
the pixel values by 255.0 so that they are in the [0,1] range
as [43]. Moreover, we do not preprocess the data set following
common practice without data augmentation [34], [36], [39],
[44], [45].

D. Experimental Results

1) n-Bit: As the theoretical analysis in Section III, different
quantized bit width brings different sampling loss, and the
larger bit width means the less sampling loss. Thus, in this
experiment, we evaluate the test error rates of our n-BQ-
ResNet that is fine-tuned on full-precision ResNet-110 when n
takes different values on CIFAR-10. The experimental results
from Table II are consistent with (1). Therefore, the choice of 3
bit is better because £(4) is close to 0 as (3) when considering
both the sampling loss and the conciseness of weight repre-
sentation. Obviously, this result is also experimentally proved
by works in [26]. Thus, our n-BQ-NN is chosen as T-BQ-NN
when n = 3 in the subsequent experiments.

2) Accuracy and Capacity: As hardware devices require rel-
atively simple architecture and less number of layers, we have
selected some networks suited for hardware implementation
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TABLE II

OUR n-BQ-RESNET GENERATES EXTREMELY LOW-PRECISION MODELS
WITH VERY SIMILAR ACCURACY COMPARED WITH FULL-PRECISION
RESNET-110 MODEL ON CIFAR-10

Model Bit-width  Test error
ResNet-110 ref 16 6.61%
n-BQ-ResNet 5 7.04%
n-BQ-ResNet 4 7.07%
n-BQ-ResNet 3 7.15%
n-BQ-ResNet 2 8.76%
n-BQ-ResNet 1 10.52%

as our comparative experiment. For example, BNN with
binary weights and activations replaces most multiplications
by 1-bit XNOR operations. Network in Network utilizes the
global average pooling over feature maps in the classifica-
tion layer, which is less prone to overfitting than the fully
connected layers. All-CNN achieves a new architecture that
consists solely of convolution layers replacing max-pooling
by a convolution layer without loss in accuracy on several
benchmarks. Highway Network allows unimpeded information
flow across many layers using adaptive gating units to regulate
the information flow.

There is a general manifestation that T-BQ-NN performs
better than most other network structures, while these network
structures have never been quantized except BNN. In the
experiment here, T-BQ-NN is trained by our training algorithm
from scratch due to the lack of pretrained model, and this
model is trained with a mini-batch size of 50 and a weight
decay of 0.0001. Its test error rates of 7.59% on CIFAR-10,
28.9% on CIFAR-100, 2.29% on SVHN, and 0.5% on MNIST
are lower than the test error rates achieved by Network in
Network, Highway Network, and BNN. Particularly, T-BQ-NN
makes up for the classification accuracy of BNN on CIFAR-
100 to some extent. The best result for all listed data sets is
T-BQ-NN except CIFAR-10 is All-CNN, and all results are
shown in Table III.

Our model capacity is even more encouraging: the number
of parameters of T-BQ-NN is significantly lower than those of
other network structures. Particularly, T-BQ-NN achieves the
number of parameters of 1.2M that is even lower than 1.7M
of BNN shown in Table III.

3) Extension: One positive effect of our training algorithm
is universal. We popularize our training method to the better
and deeper architectures, not just limited to CNNs, such as
ResNet [16] and DenseNet [17]. In the experiment here,
T-BQ-ResNet and T-BQ-DenseNet are 3 bit that are fine-tuned
by our training algorithm based on the full-precision model of
ResNet and DenseNet.

For T-BQ-ResNet, all the multiplications are converted
to SHIFT and ADDER operations using 3-bit weights in
all convolutional layers and shortcut connections. We use a
momentum of 0.9 and a weight decay of 0.0001 [44], [49],
and adopt the weight initialization and BN [31], [32] without
dropout [50]. This model is trained with a mini-batch size
of 128 and a learning rate of 0.1, divided by 10 at 32k and 38k
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TABLE III

ERROR RATES ON CIFAR-10 AND CIFAR-100 DATA SETS WITH STANDARD DATA AUGMENTATION (TRANSLATION AND MIRRORING). ERROR RATES
ON MNIST AND SVHN DATA SETS WITHOUT DATA AUGMENTATION. THE OVERALL BEST RESULTS ARE BOLD. “*” REPRESENTS THE RESULTS
RUN BY OUR IMPLEMENTATION, THE REST OF THE RESULTS REPRESENTS THAT THEY ARE DIRECTLY CITED
FROM THIS ARTICLE IN THE FRONT OF THE ROW

Test error
Method Depth  Params | CIFAR-10 CIFAR-1000 SVHN  MNIST
Network in Network [34] 9 1.9M 8.81% 35.68% 2.35% 0.53%
All-CNN [33] 9 1.4M 7.25% 33.71% *317%  *0.63%
Highway Network [38] 19 2.3M 7.72% 32.39% *2.61%  0.67%
BNN [15] 9 1.7M 11.40% *42.13% 2.80% 0.96%
Round Quantization 1.2M 85.88% 98.90% 83.72%  80.55%
T-BQ-NN 1.2M 7.59% 28.90% 2.29% 0.50%

40

— TBQ-Net on C100
20- BinaryNet on C100
TBQ-Net on C10
BinaryNet on C10
TBQ-Net on SVHN
BinaryNet on SVHN
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Fig. 4.

Comparison of the T-BQ-NN and BNN top-1 error rates on CIFAR10, CIFAR100, and SVHN validation data sets, where the curves, from top

to bottom at 900 iterations, represent T-BQ-NN on C100, BNN on C100, T-BQ-NN on C10, BNN on C10, T-BQ-NN on SVHN, and BNN on SVHN,

respectively. Note that the results of data sets run by ourselves.

TABLE IV

FINE-TUNING RESNET AND DENSENET BY OUR TRAINING ALGORITHM
ON CIFAR10(100) AND SVHN, WHERE THE RESULTS ON C10
AND C100 WITH DATA AUGMENTATION AND THE RESULTS
ON SVHN WITHOUT DATA AUGMENTATION

Network Depth  Bit-width Params  Test error(%)
- ResNet 110 16 1.7M 6.61
o~ | T-BQ-ResNet 110 3 0.3M 7.15 (+0.54)
% DenseNet 100 16 0.8M 451
T-BQ-DenseNet 100 3 0.15M 531 (+0.80)
S ResNet 110 16 1.7M 35.87
; T-BQ-ResNet 110 3 0.3M 37.56 (+1.69)
£ |  DenseNet 100 16 0.8M 2227
“ | LBQ-DenseNet 100 3 0.15M  24.10 (+1.83)
ResNet 110 16 1.7M 3.13
Z | T-BQ-ResNet 110 3 0.3M 3.25 (+0.12)
% DenseNet 100 16 0.8M 1.76
T-BQ-DenseNet 100 3 0.15M  2.10 (+0.34)

iterations, and terminates training at 64k iterations. We achieve
the test error rates of 7.15% on C10, 37.56% on C100, and
3.25% on SVHN using T-BQ-ResNet, just rises 0.54% on C10,
1.69% on C100, and 0.12% on SVHN compared with ResNet
on the basis of Table IV.

TABLE V

DEEP COMPRESSION METHOD FOR T-BQ-RESNET AND
T-BQ-DENSENET. P: PRUNING, Q: QUANTIZATION,
AND H: HUFFMAN CODING

Method ]sﬁf::,(ll;tl}gl Compression ratio
T-BQ-ResNet on C10 (P+Q) 3 49 x
T-BQ-ResNet on C10 (P+Q+H) 2.6 57x
T-BQ-ResNet on C100 (P+Q) 3 25%
T-BQ-ResNet on C100 (P+Q+H) 2.8 27 %
T-BQ-ResNet on SVHN (P+Q) 3 24 x
T-BQ-ResNet on SVHN (P+Q+H) 2.8 26 %
T-BQ-DenseNet on C10 (P+Q) 3 38
T-BQ-DenseNet on C10 (P+Q+H) 2.5 46 x
T-BQ-DenseNet on C100 (P+Q) 3 15x
T-BQ-DenseNet on C100 (P+Q+H) 2.8 16X
T-BQ-DenseNet on SVHN (P+Q) 3 133x
T-BQ-DenseNet on SVHN (P+Q+H) 2.1 190x

For T-BQ-DenseNet, its model consists of Bottleneck layers
indicated to BN-ReLU-Conv(l x 1)-BN-ReLU-Conv(3 x 3)
and transition layers indicated to BN-ReLU-Conv(l x 1)-
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TABLE VI

COMPARISON OF CLASSIFICATION ACCURACY ON THE TEST SET FOR IMAGENET WITH DIFFERENT BIT WIDTHS OF WEIGHTS AND ACTIVATIONS.
SINGLE-CROP EVALUATION RESULTS TOP-1 AND TOP-5 ACCURACY ARE GIVEN BASED ON ALEXNET. NOTE THE GRAY RESULTS ARE
IMPLEMENTED BY OUR n-BQ-NN, WHERE THE TRAINING METHOD OF 1-bit ACTIVATIONS IS INTRODUCED IN SECTION III-E, AND
OTHER RESULTS ARE REPORTED BY [46]. WE QUANTIZE THE SAME LAYERS OF ALEXNET TO LOW PRECISION, AS BNN [15],

BC [47], TWN [48], AND DOREFA-NET [27] DO

n-bit n-bit Activa- Inference Operation  AlexNet Top-1 Ac- AlexNet Top-5 Ac-

Weights tions curacy curacy

1 1 XNOR 0.279 (BNN) 0.504 (BNN)

1 1 XNOR 0.348 0.601

1 32 (float) XNOR ADDER 0.368 (BC) 0.620 (BC)

1 16 (float) XNOR ADDER 0.486 0.734

2 32 (float) XNOR ADDER 0.529 (TWN) 0.766 (TWN)

2 16 (float) XNOR ADDER 0.536 0.777

3 16 (float) SHIFT ADDER 0.560 0.795

8 (float) 8 (float) MAC 0.530 (DoReFa-Net) 0.768 (DoReFa-Net)

32 (float) 32 (float) MAC 0.566 0.802
averpool(2 x 2), and both of these layers contain 1 x 1 con-

. . Parallel
volution. We use a weight decay of 0.0001 and a momentum architecture
of 0.9 [51], and adopt the weight initialization and BN without
dropout. This model is trained with an initial learning rate ZCu102 C\
of 0.1, divided by 10 at 50% and 75% of the total number of == 77
training epochs. We train using a batch size of 64 for 300 and HOST I A I : F :
H input images | |
40 epochs, respectively, on CIFAR and S.VHN. .COanared COMPUTER IR H=10F
between DenseNet and T-BQ-DenseNet, the increasing in error (image composition, [ G :
is 0.80% from 4.51% to 5.31% on C10, 1.83% from 22.27% to precision reduction) : M : LA
24.10% on C100, and 0.34% from 1.76% to 2.10% on SVHN, L_1 :_ }
as shown in Table IV. |————— I ~
We attribute this primarily to reduce the number of para- i DDR !

meters approximately five times from 0.8M to 0.15M on
T-BQ-DenseNet and from 1.7M to 0.3M on T-BQ-ResNet,
as shown in Table IV. Furthermore, a hybrid network com-
pression solution combined with three different techniques,
respectively, such as network pruning [19], quantization,
and Huffman coding, is tested for T-BQ-ResNet and T-BQ-
DenseNet in a scene with the same classification accuracy.
Compared with the original full-precision ResNet-110 model,
we achieve the compression ratio of 57x on C10, 27x on
C100, and 26x on SVHN for T-BQ-ResNet. For T-BQ-
DenseNet, the compression ratio is 46 x on C10, 16 x on C100,
and 190x on SVHN, as shown in Table V.

4) Convergence Speed: In this experiment, we train our
T-BQ-NN and BNN from scratch on C10, C100, and SVHN.
The results in Fig. 4 indicate that T-BQ-NN not only has a
better performance on classification accuracy than BNN but
also converges much faster. We just only compare our method
with BNN because the weights of other network models in
Table III are full precision and these models are not quantized
except BNN and T-BQ-NN. We use the same conditions,
including learning rate, batch size, and iterations, to test the
error rates of BNN and T-BQ-NN at first epoch. Compared
with BNN, T-BQ-NN reaches the best test error dropping

Kernel weights
(FPGA on-chip
memory)

Fig. 5. High-level block diagram of our system.

from 500 to 150 epochs on C10, from 1000 to 100 epochs
on MNIST, and from 1000 to 180 epochs on C100. As a
result, T-BQ-NN can be trained much easier and faster than
BNN.

This result may be due to the fact that straight-through
estimator used by BNN contains noise, which causes the
unexpected deviation, while our training algorithm is based
entirely on back-propagation without the effect of noise and
weight representation is more abundant.

E. ImageNet

We further evaluate our n-BQ-NN on ILSVRC2012 [11]
image classification data set that consists of 1.2 million
high-resolution natural images, where the validation set con-
tains 50k images. These images are organized into 1000 cat-
egories of the object for training, which are resized to
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Fig. 6. Overall parallel architecture with cluster of SVPEs.

224 x 224 pixels before fed into the network. In the next
experiments, we report our single-crop evaluation results using
top-1 and top-5 accuracies.

AlexNet: This CNN architecture is the first structure that
shows to be successful on ImageNet classification task, which
consists of five convolutional layers and two fully connected
layers [1]. We use AlexNet coupled with BN that contains a
total of 61M parameters.

In training, images are resized randomly to 256 x 256
pixels, and then, a random crop of 224 x 224 is selected for
training. We train our n-BQ-NN for 50 epochs with a batch
size of 128/16 based on AlexNet/Vgg-16. We use ADAM
optimizer with a learning rate of le-4. We replace the local
contrast renomalization layer with batch normalization layer.
At inference, we use the 224 x 224 center crop for forward
propagation.

The ablation experiments are listed in Table VI. The base-
line AlexNet model scores 56.6% top-1 accuracy and 80.2%
top-5 accuracy that is reported in [52]. For ablation studies,
we strictly control the consistency of variables, including
network structure, bit width, and quantized layers. The only
difference is the quantization method. In experiments of
“1-1” versus “1-1,” “1-16” versus “1-32.” and “2-16" versus
“2-32. our n-BQ-NN achieves 6.9%, 11.8%, and 0.7% accu-
racy improvements, respectively. For “3-16 versus “32-32,”
our n-BQ-NN only reduces the accuracy by 0.6%.

V. ACCELERATION ON FPGA

We evaluate our n-BQ-NN on the FPGA platform: Xilinx
ZCU102, which consists of an ultrascale FPGA, quad ARM
Cortex-AS3 processors, and 500-MB DDR3. To measure the
performance of our n-BQ-NN running on FPGA, we get the
data of run-time, resource utilization, and power by simulating

and testing on Vivado-2017 when the operating frequency
is 200 MHz. Our n-BQ-NN implementation involves a few
design parameters, parallelization degree (P, and P,), filter
size (k), input feature maps width (W), input feature maps
height (H), input feature channels (M), and output feature
channels (N).

A. Coprocessor Architecture

Fig. 5 shows the block diagram of our system. In the
CNN calculation process, the host computer hands off the
weights and images to the coprocessor (ZCU102) and collects
the predicted classification results. The transmission mode
between host computer and ARM CPU can be switched in
PCI or UDP. Before the computation, the host computer is
responsible for feeding the images and reducing precision.
In addition, the ARM CPU needs to complete the calculation
of fully connected layers that is not suitable for FPGA parallel
acceleration, and the FPGA accelerates the calculation of
convolutional layers.

We build the coprocessor with parallel architecture,
as shown in Fig. 6. The critical part of the coprocessor is
SVPE cluster interface that has M SVPE clusters, where each
SVPE cluster consists of N SVPE arrays with a size of k x k.
The adders are used to compute partial sums of convolutions
while the SVPE arrays compute convolutions. The fetch unit
is programmed to fetch images and weights from ARM-based
processing system (PS), and the load/store unit is used to load
or store intermediate calculation results. The AXI-HP port is
used to receive or send the data, and the AXI-GP port is used
to receive or send the network structure information and the
control signal. A key point to note is 16-bit computational
accuracy acts on the data buses to save data bandwidth.
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Fig. 7. SVPE array implementing the primitive 2-D convolver unit, where the double orange rectangles represent on-chip memory banks to buffer the weights,
the single orange rectangles represent registers, the sky blue roundnesses represent shift operations instead of multipliers in VPE array, and the deep-green

roundnesses represent adders.

The basic design ideas continue the architecture of
n-BQ-NN, which converts all 16-bit weights as n-bit weights
to reduce memory usage and increase the parallelization
degree. On FPGAs, due to the shortage of DSPs, this has
become a major factor limiting the increase in parallelization
degree that directly affects the ability to accelerate calcu-
lation for CNNs because the multiplication in the convolu-
tion calculation needs to call DSPs. Instead, we implement
the multiplication with SHIFT operation that consumes the
lookup table (LUT) arrays on FPGAs, while the resource
of LUTs is more abundant than that of DSPs [30]. In gen-
eral, our n-BQ-NN consists of 16-bit activations and n-bit
weights.

Our architecture of convolution computation is character-
ized by several key attributes compared with VPEs [14]. First,
we organize the architecture as arrays of SVPEs, where the
SVPE array is an array of 2-D convolvers, each of which
consists of k* connected SHIFT and ADDER units instead of
multiply accumulate (MAC) units, as shown in Fig. 7. The
weights and feature maps are loaded into each PE alternately
by AXI-HP port. Before each calculation, the weights are
buffered to the specified areas (the double orange rectangles
in Fig. 7), and then, the pipeline calculation starts with the
enablement of feature maps. Modeling the SVPE and VPE
arrays, we compare their resource consumption, parallelization

degree, and power on FPGAs as shown in Table VII, and
our SVPE array achieves the average energy consumption
of 3.81 W at different n that is less than VPE array of 5.53 W.
Second, we reduce banded off-chip data memory and improve
the data movement between the SVPE clusters and the off-
chip memory by using n-bit weights. Third, all convolvers
are homogeneous when k is fixed as our primitive operator.
We evaluate the improvement of the computational efficiency
of n-BQ-NN in hardware in Section V-B.

B. Computational Efficiency

Since the filter size (3 x 3) is fixed for our n-BQ-NN,
resource utilization will be maximized. Here, we can predict
the performance of n-BQ-NN on FPGAs by developing an
analytical model. In the following, we rely on it to compare
computational efficiency between traditional implementation
and n-BQ-NN on FPGAs.

On the hardware, MAC unit, adder, and multiplier will
consume DSP. In fact, the number of DSPs only depends
on the size of filter and parallelization degree [12], [30] as

follows:
DSP = (k* 4+ k) x P, X P,. (35)

We must balance the memory bandwidth between the
on-chip and off-chip memory and ensure that the speed of
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TABLE VII

COMPARISON OF VPE AND SVPE ARRAY RESOURCE CONSUMPTION,
PARALLELIZATION DEGREE, AND POWER

Array SVPE VPE
Precision (n) 1 2 3 4 5 16
Signal | 1.94 | 2.31 | 2.61 | 2.53 | 2.13 | 4.88
Logic 1.03 | 1.33 | 1.55 | 1.63 | 1.62 | 0.25
Power (W)
DSPs 0.08 | 0.09 | 0.09 | 0.08 | 0.06 | 0.40
Total 305|373 | 425|424 | 381 | 553
LUTs 353 | 280 | 307 | 334 | 346 41
Used FFs | 220 | 226 | 232 | 238 | 244 | 213
Resource s
DSPs 3 3 3 3 3 12
Parallelization degree
(Pr Py (8.32) @.16)

transmission is greater than or equal to the speed of compu-
tation for utilizing the resource efficiently. The formula of the
time to process input data in the line buffer on FPGA is

M N 1
Tcompute= HXxWX—x—

X —— (36)
P, P, Freq

where Freq is the operating frequency of the FPGA. Together,
we have to parallel the speed of transmission between input
and output data as follows:
MxNxk>+kxWxM
Bandwidth

We require that Tiansfer < Tcompue- Therefore, we can get
that the minimum requirement of bandwidth is
Pﬂl X PI’Z

min(N, M)

(37)

Tlransfer =

Bandwidth,,;,, = X beompute X Freq (38)
where beompuee 18 the bit width of computation, and we evaluate
the performance of hardware acceleration choosing 16-bit
width. We define the Tj,; as the time to load the first n rows of
input image and filter needed into on-chip memory as follows:
M x N x k* X byeighe = W x M x k

Bandwidth Bandwidth
where byeione is the bit width of the weights. The total
operations are

OPs=H x W x M x N x k* x 2.

Tinit =

X bcompute (39)

(40)

The total processing time of the convolution is

Tioral = Tcompute + Tinit.- (41)

Finally, we can compare the computational efficiency of
different models defining the effective performance of con-
volution as follows:

OPs

Perfeﬂ»‘ = (42)

total .
We obtain the computational efficiency Perfe (1) correspond-
ing to different bit widths of the weights, where n = byeignt
represents the bit width of our n-BQ-NN

32FreqP,, P, H W Nk?

Perfer (n) = '
erferr (1) 16HWN +nMNkK? +16WMk

(43)
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Fig. 8. Universal SVPE array supporting AlexNet with multiple kernel
sizes (3, 5, and 11), where the yellow blocks are shift-accumulator units.

Now, given a convolutional layer represented as (W, H,
M, N), we get the computational efficiency based on design
parameters (k, Py, Pp).

The main reason for restricting the computational efficiency
of CNNs on FPGA is a parallelization degree, which is
directly related to DSPs when the setting of bandwidth is
reasonable. To speed-up the inference of CNNs on FPGAs,
we use our SVPE cluster to replace the traditional VPE
cluster by converting the multiplications as the SHIFT and
ADDER operations. Since we no longer use the multiplication,
the amount of DSPs is reduced as follows:

DSP =k x P, x P,. (44)

Since SVPE array consumes much less DSPs than VPE
array compared (35) with (44), n-BQ-NN with SVPE array
can get a larger amount of parallelization degree than CNNs
with VPE array when the consumed DSPs are the same.
Based on the maximum DSP number of 2520 as shown in
Table VIII and the balanced memory bandwidth, we can design
the maximum parallelization degree of (P,, = 32, P, = 8) and
(P, = 16, P, = 4), respectively, on SVPE and VPE arrays
with filters 3 x 3. Thanks to the SVPE array, the parallelization
degree increases by four times to improve the computational
efficiency greatly when the total consumed DSPs is 768. Sup-
posing the color image is 32(W)x32(H)x3(M) pixels, filter
size k is 3, and DDR bit width N is 128, the computational
efficiency of our n-BQ-NN using SVPE array has improved by
about 4.1 times compared with the traditional network using
VPE array on the basis of (43).

C. Performance on FPGA

We evaluate our SVPE cluster implementation using
AlexNet, where our n-BQ-NN contains 16-bit activations and
3-bit weights. Table VIII gives the evaluation results with
the comparison of the state-of-the-art FPGA accelerators,
where GOP indicates the unit of the number of operations.
From the hardware perspective, we prefer to use computa-
tional efficiency to describe the performance of the algorithm.
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TABLE VIII
PERFORMANCE COMPARISON FOR ALEXNET
[53] Baseline [30] Our Impl.
Precision 32bits fixed | 16bits fixed | 16bits fixed | 16bits fixed
Device VX485T ZCU102 ZCU102 ZCU102
Freq(MHz) 100 200 200 200
Logic cell(K) 485.7 600 600 600
DSP 2800 2520 2520 2520
BRAM(Kb) 2060% 18 182418 182418 1824 %18
convl(GOP/s) 27.5 227.5 409.6 410.5
conv2(GOP/s) 83.8 535.8 1355.6 1744.3
conv3(GOP/s) 78.8 655.9 1535.7 1680.7
conv4(GOP/s) 77.9 634.4 1361.7 1739.4
conv5(GOP/s) 77.6 559.5 1285.7 1456.1
CNN average
(GOPIs) 61.6 332.2 854.6 957.4
Power(W) 18.6 28.7 23.6 19.6
DSP Efficiency
(GOP/s/DSPs) 0.022 0.131 0.339 0.381
Logic cell
Efficiency 0.127 0.553 1.424 1.596
(GOP/s/cells/K)
Energy
Efficiency 3.31 11.57 36.2 48.85
(GOP/s/W)
DSP Utilization 80% 30% 63% 30%
LUT Utilization 61% 48% 39% 73%
FF Utilization 34% 42% 33% 68%
BRAM
Utilization 50% 50% 43% 83%

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

energy efficiency and resource efficiency come from the novel
SVPE structure.

VI. CONCLUSION AND FUTURE WORK

In this article, we present a novel learning framework to
quantize full-precision CNN models into low-precision QNN
models, whose weights are constrained to the power of two.
We solve the problem of gradient vanishing by adding a recon-
structed gradient function into the back-propagation algorithm.
To satisfy the network-structure-optimization requirements for
hardware limitation, we propose n-BQ-NN, a novel QNN
structure, to replace the multiplication with the SHIFT oper-
ation, whose structure is more suitable for the inference on
FPGAs. Furthermore, we also design the SVPE array to
replace all 16-bit multiplications with SHIFT operations in
convolution operation on FPGAs. For proving the validity of
our learning framework, we conduct experiments and show
that the quantized models of ResNet, DenseNet, and AlexNet
through our learning framework can achieve almost the same
accuracies with the original full-precision models. Moreover,
when using our learning framework to train our n-BQ-NN
from scratch, it can achieve nearly state-of-the-art results com-
pared with typically low-precision QNNs. We also evaluate the
computational efficiency and energy consumption by imple-
menting our QNNs models on Xilinx ZCU102 platform. In our
hardware experiments, our 7-BQ-NN with our SVPE can exe-
cute 2.9 times faster than with the VPE in inference, and the
use of SVPE array also reduces average energy consumption to
68.7% of the VPE array with 16 bits. Our future work should
explore how to decrease the accumulated quantization errors
further when our learning framework is used on different CNN
structures.

Because the total operations of computing a network are fixed,
we can get the execution time(s) by dividing the total opera-
tions (GOP) by the computational efficiency (GOP/s). Similar
to the structure of Fig. 7, a universal SVPE array designed by
the largest filter size of AlexNet is proposed in Fig. 8. This
experiment will use the universal SVPE array that fits the full
size after a slight adjustment. Our array designs to be recycled
when calculating the convolutions of different layers, and
11 x 11 filter of AlexNet is only used in the first convolutional
layer, so most of the array utilization is extremely low. This
also confirms the necessity of designing the network architec-
ture with 3 x 3 unified filter to improve resource utilization as
shown in Table 1.

Compared to prior works [30], [53], we improve the average
CNN performance to 957.4 GOP/s, where the work [30]
is implemented by the Winograd algorithm. The baseline is
to implement the same hardware architecture as our imple-
mentation. The only difference is that it uses VPE cluster
because its weights and activations are both 16 bits. The
computational efficiency of our implementation has improved
by 2.9 times compared with the baseline, which is slightly
less than 4.1 times based on the theoretical calculations
of Section V-B. On the other hand, our implementation also
improves the energy efficiency to 48.9 GOP/s/W. The better
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